

The Current State of Grid Computing: The SAGA Worldview

Shantenu Jha, A Luckow, A Merzky, M Santcroos, O Weidner

http://saga.cct.lsu.edu

MAGIC Meeting, 06 July 2011

What is SAGA?

- Simple, integrated, stable, uniform and community-standard
 - Simple and Stable: 80:20 restricted scope
 - Integrated: Similar semantics & style across primary functional areas
 - Uniform: Same interface for different distributed systems
 - The building blocks upon which to construct "consistent" higher-levels of functionality and abstractions
 - OGF-standard, "official" Access Layer/API of EGI, NSF-XD

What is the Current State-of-Play in Production-Ready Grid Infrastructure?

- Separate grid technologies, from production grid infrastructure (PGI), from grid/distributed applications
- Individual Grid technologies:
 - Mostly maturing, strengthening, seeing uptake
 - e.g., Many grid technologies are to be found in cloud space
 - Federation does not have to be difficult, but is due to tech & policy
 - e.g., security, underlying policy behind security token
- Most PGI don't work as grid infrastructures!
 - Except for the elite few applications/projects
 - Narrow grids vs general-purpose grids [Jha, Merzky, Fox, CCPE'08]
- Applications:
 - Develop distributed applications as localized applications, and then export to distributed environments a posteriori
 - Need to factor distribution and services a priori
 - Abstractions for developing distributed applications missing

Open Challenge

- Integrated end-to-end solutions for science & engineering
- Low impedance between levels and across capabilities
 - There exist many moving parts and degrees-of-freedom
 - Individual components exist, but not integrated within consistent architectures
 - Multiple point-solutions but very few end-to-end solutions
 - Most PGI effort: Individual software, not application capabilities
- Research Questions that are engendered?
 - How do we integrate software across levels?
 - How do we integrate capabilities?

The Road Ahead

- Context set by open challenge: Integrated end-to-end solution
- The need for broadly and deeply Integrated capabilities
 - Broadly Integrated:
 - Integrated end-to-end solutions for applications require transparent federation of capabilities and the interoperability of services
 - Deeply Integrated:
 - Upper-level integration between application and middleware
 - Lower-level Integration between middleware and hardware
- One suggestion for NSF + DOE
 - Test-beds exist, but need to support end-to-end effort to use them to transition from experimental to production-grade